Module quantum_inferno.synth.blast_gt_pulse
This module facilitates the rapid construction of the GT blast pulse synthetic, its integral and derivatives, and its spectrum References: - Garcés, M. A. (2019). Explosion Source Models, Chapter in Infrasound Monitoring for Atmospheric Studies, Second Edition, Springer, Switzerland, DOI 10.1007/978-3-319-75140_5, p. 273-345. - Schnurr, J. M., K. Kim, M. A. Garcés, A. Rodgers (2020). Improved parametric models for explosion pressure signals derived from large datasets, Seism. Res. Lett. - Kim, K, A. R. Rodgers, M. A. Garces, and S. C. Myers (2021). Empirical Acoustic Source Model for Chemical Explosions in Air. Bulletin of the Seismological Society of America
Functions
def gt_blast_center_fast(frequency_peak_hz: float = 6.3, sample_rate_hz: float = 100.0, noise_std_loss_bits: float = 16.0) ‑> Tuple[numpy.ndarray, numpy.ndarray]
-
Fast computation of GT pulse with noise
:param frequency_peak_hz: peak frequency, nominal 6.3 Hz for 1 tonne TNT :param sample_rate_hz: sample rate, nominal 100 Hz :param noise_std_loss_bits: noise loss relative to signal variance :return: centered time in seconds, GT pulse with white noise
def gt_blast_center_integral_and_derivative(frequency_peak_hz: float, sample_rate_hz: float) ‑> Tuple[float, numpy.ndarray, numpy.ndarray, numpy.ndarray]
-
Integral and derivative of GT pulse relative to tau (NOT time_s)
:param frequency_peak_hz: peak frequency in Hz :param sample_rate_hz: sample rate in Hz :return: tau center, numpy ndarray with GT blast pulse, numpy ndarray with integral of GT blast pulse, numpy array with derivative of GT blast pulse
def gt_blast_center_noise(duration_s: float = 16.0, frequency_peak_hz: float = 6.3, sample_rate_hz: float = 100.0, noise_std_loss_bits: float = 16.0) ‑> Tuple[numpy.ndarray, numpy.ndarray]
-
Fast computation of GT pulse with noise for a specified duration in seconds
:param duration_s: signal duration in seconds. Default 16 :param frequency_peak_hz: peak frequency. Default 6.3 Hz for 1 tonne TNT :param sample_rate_hz: sample rate. Default 100 Hz :param noise_std_loss_bits: noise loss relative to signal variance. Default 16 :return: centered time in seconds, GT pulse with white noise
def gt_blast_center_noise_uneven(sensor_epoch_s:
, noise_std_loss_bits: float = 2.0, frequency_center_hz: Optional[float] = None) ‑> numpy.ndarray -
Construct the GT explosion pulse of Garces (2019) for even or uneven sensor time in Gaussian noise with SNR in bits re signal STD. This is a very flexible variation.
:param sensor_epoch_s: array with timestamps for signal in epoch seconds :param noise_std_loss_bits: number of bits below signal standard deviation. Default is 2 :param frequency_center_hz: Optional center frequency in Hz :return: numpy array with anti-aliased GT explosion pulse with Gaussian noise
def gt_blast_derivative_period_center(time_center_s: numpy.ndarray, pseudo_period_s: float) ‑> numpy.ndarray
-
Derivative of the GT blast with delta function approximation
:param time_center_s: array with time :param pseudo_period_s: period in seconds :return: numpy ndarray with derivative of the GT blast with delta function approximation
def gt_blast_ft(frequency_peak_hz: float, frequency_hz: Union[numpy.ndarray, float]) ‑> Union[float, complex, numpy.ndarray]
-
Fourier transform of the GT blast pulse
:param frequency_peak_hz: peak frequency in Hz :param frequency_hz: frequency in Hz, float or np.ndarray :return: Fourier transform of the GT blast pulse
def gt_blast_integral_period_center(time_center_s: numpy.ndarray, pseudo_period_s: float) ‑> numpy.ndarray
-
Integral of the GT blast with initial condition at zero crossing
:param time_center_s: array with time :param pseudo_period_s: period in seconds :return: numpy ndarray with integral of GT blast pulse
def gt_blast_period_center(time_center_s: numpy.ndarray, pseudo_period_s: float) ‑> numpy.ndarray
-
GT blast pulse
:param time_center_s: array with time :param pseudo_period_s: period in seconds :return: numpy array with GT blast pulse
def gt_blast_spectral_density(frequency_peak_hz: float, frequency_hz: Union[numpy.ndarray, float]) ‑> Tuple[Union[float, numpy.ndarray], float]
-
Spectral density of the GT blast pulse
:param frequency_peak_hz: peak frequency in Hz :param frequency_hz: frequency in Hz, float or np.ndarray :return: spectral_density, spectral_density_peak
def gt_hilbert_blast_period_center(time_center_s: numpy.ndarray, pseudo_period_s: float) ‑> numpy.ndarray
-
Hilbert transform of the GT blast pulse
:param time_center_s: array with time :param pseudo_period_s: period in seconds :return: numpy array with Hilbert transform of the GT blast pulse